Enter an equation or problem
Camera input is not recognized!

Solution - Simplification or other simple results

y2(7y42)
-y^2*(7y^4-2)

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  (2 • (y2)) -  7y6

Step  2  :

Equation at the end of step  2  :

  2y2 -  7y6

Step  3  :

Step  4  :

Pulling out like terms :

 4.1     Pull out like factors :

   2y2 - 7y6  =   -y2 • (7y4 - 2) 

Trying to factor as a Difference of Squares :

 4.2      Factoring:  7y4 - 2 

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 - AB + AB - B2 =
         A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check :  7  is not a square !!

Ruling : Binomial can not be factored as the
difference of two perfect squares

Polynomial Roots Calculator :

 4.3    Find roots (zeroes) of :       F(y) = 7y4 - 2
Polynomial Roots Calculator is a set of methods aimed at finding values of  y  for which   F(y)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  y  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  7  and the Trailing Constant is  -2.

 
The factor(s) are:

of the Leading Coefficient :  1,7
 
of the Trailing Constant :  1 ,2

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      5.00   
     -1     7      -0.14      -2.00   
     -2     1      -2.00      110.00   
     -2     7      -0.29      -1.95   
     1     1      1.00      5.00   
     1     7      0.14      -2.00   
     2     1      2.00      110.00   
     2     7      0.29      -1.95   


Polynomial Roots Calculator found no rational roots

Final result :

  -y2 • (7y4 - 2)

Why learn this

Terms and topics

Latest Related Drills Solved